The PHENIX Data Acquisition System

Brian A Cole

Columbia University Nevis Labs

for the PHENIX Collaboration

Outline

- 1. Design Requirements
- 2. Overview
- 3. Data Collection Modules
- 4. Event Builder
- 5. Status Report

PHENIX DAQ Requirements

Expected event/data rates at 10× RHIC design Luminosity (W. Zajc)

Physics Considerations

- PHENIX is designed for high rate, rare processes.
- Physics goals include probes at $\sim 100 \text{ to} < 10^{-6} \text{ per collision}$.
- Large dynamic range in event size, event rate.

<u>Architecture</u>

- Collider experiment \rightarrow pipelined system.
- Multi-level collapse/trigger \rightarrow data-driven.
- No "simple" triggers → build event, then trigger.

Design Parameters

- Front-end conversion time = $40 \,\mu s$
 - \rightarrow Maximum level-1 trigger rate 25 kHz.
- Initially will run with $80 \, \mu s$ conversion time
 - \rightarrow Maximum level-1 trigger rate 12.5 kHz.
- Design event-builder bandwidth = 2 Gbyte/s.
- "Baseline" bandwidth = 500 Mbyte/s.

DAQ System Overview

PHENIX DAQ Dataflow

- 1. "Signals" buffered in analog/digital memory until Level-1 Decision.
- 2. Data transferred to DCM in fixed format.
- 3. Zero-supression performed at DCM "input".
- 4. Pedestal subtraction, calibration applied in DCM.
- 5. Data transferred to SEB.
- 6. SEB's collapse and buffer data.
- 7. Event-builder creates complete events, runs Level-2.5 trigger.
- 8. Accepted events transferred to ONCS.

(See John Haggerty's talk re: interfaces)

The PHENIX Data Collection Module

The PHENIX Event Builder – Sub-event Buffer (SEB)

SEB Design Guidelines:

- Use commodity commercial processor \rightarrow Intel/Alpha/?
- Use standard commercial bus $\rightarrow PCI$.
- Use common operating system $\rightarrow NT/VXWorks/LynxOS$.
- Use commercial ATM (OC-3) interface card \rightarrow not yet specified.
- Use commercial receiver card for DCM data (possibly with personality card) \rightarrow not yet specified.

The PHENIX Event Builder

Major Functions

- Receive data from DCM's into sub-event buffers (SEB's).
- Switch fragments of event to Assembly Trigger Processors (ATP's).
- Assemble event. Run trigger algorithm.
- Pass complete, trigger-selected events to ONCS.

DAQ System Development Status

Data Collection Modules

- 1. Functional specs/logical design now mature.
- 2. All individual components bench tested.
- 3. Complete Prototype design will be finished imminently.
- 4. Prototype available within 2-3 months.

Sub-event Buffers

- 1. Prototype system chosen, purchased for SEB.
- 2. DCM \rightarrow PCI interface choice imminent.
- 3. Will likely try two ATM NIC's, IDT + Fore (?)
- 4. Prototype SEB must be complete for Fall Sector test.

ATM Switch

- 1. Top candidate \rightarrow FORE ASX1000 (10 Gbit/s, 64-port).
- 2. Matching of data rates from SEB's to switch demonstrated for Au+Au central at 10× design luminosity.
- 3. Will likely be purchased within 1-2 months.

Assembly trigger processors

- 1. Hardware will be similar to SEB.
- 2. Same ATM NIC+Driver as in SEB.
- 3. Software design in progress.